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Multiplicity of nonlinear thermal convection in a spherical shell
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Linear and weakly nonlinear thermal convection in a moderately thin spherical shell in the presence of a
spherically symmetric gravity subject to a spherically symmetric boundary condition is systematically inves-
tigated through fully three-dimensional numerical simulations. The convection problem is self-adjoint and the
linear convective stability is characterized byhe degree of a spherical harmoni¢&(6, ¢). While the radial
structure of the linear convection is determined by the stability analysis, there ex&tsla-fold degeneracy
in the horizonal structure of the spherical convection. Whe@(10), i.e., in a moderately thin spherical shell,
the removal or partial removal of the degeneracy represents a mathematically difficult, physically not well-
understood problem. By starting with carefully chosen initial conditions, we are able to obtain a variety of
nonlinear convective flows at exactly the same parameters near the onset of convection, including steady
axisymmetric convection, steady azimuthally periodic convection, steady azimuthally nonperiodic convection,
equatorially asymmetric convection, and steady convection in the form of a single giant spiral roll covering the
whole spherical shell which is stable and robust for a wide range of the Prandtl number.
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[. INTRODUCTION rotation of a given convection solution in a spherical shell.
o ) ) It is well known that solutions of the linear convective
The problem of thermal convection in a spherical fluid giapility are characterized Bythe degree of a spherical har-
shell is of interest to geophysmal and astrqphy_smal fluid Sysmonich,m [1]. The preferred value df denoted byl., and
tems(e.g.,[1-3)). At Iea’dmg-order approximation, thermal {he radial structure of the linear solution can be determined
convection in the Earth’s manti@ thick spherical shellor 1y the jinear stability analysis. It follows that there exists
in Mercury's mantle(a moderately thin shelis subject to a (21.+1)-fold degeneracy of the linear problem. Generally

spherically symmetric radial gravity force and a Spherica”yspeaking, when the spherical shell is thitlc O(1), the re-
symmetric boundary condition. It is generally accepted tha

S Foval or partial removal of the degeneracy is pos blg.,
planetary magnetic fields are generated through magnetohﬁ]). Howgver, when the thicknessgof the ghellpdei(reagl%es,

drodynamic processes in their electrically conducting ﬂu'dincreases and the corresponding nonlinear problem for re-

cores below the planetary mantles. Paleomagnetic_: and hi_ﬁﬁoving or partially removing thé?2l.+1)-fold degeneracy
torical magnetic field measurements suggest persistent dI%—

) . C P .~ becomes extremely complicated. Furthermore, there are fun-
tinct patterns of variation of the geomagnetic field tak'ngdamental differences between the cases with even and odd
place in different regions of the lower man{lé]. There is

. , .values ofl.
strong evidence that the structure of the Earth’'s magnetic It was first shown by Bussg7] (see also[10]) that the

g(reldsolr? d?tti:)Onnsgg/t 'E[ihﬁeegedo??htehﬁu?gtgrrg \?Jh?fha:sflzgsgg:;r:g_ olvability conditions for the weakly nonlinear convection
Y P ith 2<1.<6 select a small number of steady convection

Similar eflasts would oocur i athar Earthelice planbts. This PALIEMS When the system is not self-adjoint. For example, he
P : showed that the axisymmetric convection solution is pre-

is because lateral variations in heat flux across the Coreferred forl,=2 while the tetrahedral solution is stable for

R : ; "} .=3. The mathematical problem of two-dimensional pattern
S|gn|f|ca_mtly influence the generation process of planetanftcjrmation on a sphere without reference to the physical de-
magnetic fieldg6]. The problem of convection patterm in a tails of a system has been studied by a number of authors
spherical shell is hence closely linked to the thermal history(e 9..[8.11,19). Matthews[11,12 has recently made signifi-

of ﬁ)_lr?gitsn%gitgﬁ" :?)ﬁlgenrﬁtliﬁ f;e!sdsﬁerical shell particularl cant progress on the understanding of the spherical pattern
P P ' P yproblem for large values of. He considered a two-

in a moderately thin shell, is marked by the pattern and ori-,. . : : : .
entational deggneracie{e.g., [7-10). Heyre the? pattern de- dimensional variablaV near a bifurcation point
generacy is concerned with the exact same eigenvalue for
many linear solutions which have different spatial structures
on a spherical surface and are physically equally realizable,
while the orientational degeneracy arises from the arbitrary

|
W6, ¢, = X z(DY](6, ), (1)

m=-|
wherez, are in general complex and all the modgshave

the same growth rate. The steady two-dimensional problem
*Electronic address: kzhang@ex.ac.uk is then governed by the followin@l +1) equations
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ol VT(r) =-pr, (4)

0=\z,+ c(mg,my,m , 2 . . . .
Zm mlzz:_| m22=_| (M, M, )Zmlzmz @ where B is a positive constant, is produced by a uniform

distribution of heat sources in the whole spherical system.

wherec(m;,m,,m) are related to the Clebsch-Gordan coef-The problem of thermal convection in a spherical shell is
ficients. The existence and stability of the stationary soluthen governed by the following three equatigf
tions of Eq.(2) for evenl up tol=12 were examined. Mat- au 1
thews [11,12 found that all bifurcating branches of —+u-Vu=-=Vp+yaOr + vV, (5)
stationary solutions to quadratic order are unstable, the axi- ot p
symmetric state is never the preferred solution and the pre-
ferred solutions have icosahedral symmetry. In consequence,
the higher-order terms, which are system dependent, play an
essential role in determining the physically realizable pat-
terns in spherical geometry. Matthe\ukl] also studied the V.u=0, )
Swift-Hohenberg model by numerical simulations using a
pseudospectral method. Many different patterns, includingvheret is time, p is the fluid density® represents the de-
axisymmetric and spiral solutions, were found. viation of the temperature from its static distributidgr), p

This paper presents the first systematic study of threeis the total pressure, andis the three-dimensional velocity
dimensional spherical convection in a moderately thinfield, u=(u,,uy,u,) in spherical polar coordinates, 6, ¢)

spherical shell with;=0(10) using fully three-dimensional jith (7, 8, ¢) denoting the corresponding unit vectors. In Eq.
_numerlcal _S|mulat|ons. A number of new convection patterngs) the termay®Or represents the buoyancy force that drives
in a spherical shell are found for the first time. The papekhermal convection and provides a coupling to the heat equa-
considers a Boussinesq fluid of uniform viscositgonfined  tjon (6).

in a spherical shell bounded by two concentric spherical sur- \we shall employ the thickness of the spherical shell
faces of inner radius; and outer radius, which have non-  =(y_-r,) as the length scalaf?/ v as the unit of time, and

slip velocity and isothermal temperature boundary condigy2,/ as the unit of temperature fluctuation of the system,
tions. Convective motions in the spherical shell are driven byyhich |ead to the dimensionless equations

a spherically symmetric gravity force in connection with a
spherically symmetric distribution of heat sources, a well-
known convection model proposed by Chandrasekhprit

is significant to note that the convection problem in a nonro-
tating spherical shell is self-adjoint. In comparison with ro- 90
tating spherical convection in which the Coriolis force Pr—+u-VO=u-r+V?0, 9
breaks spherical symmetre.g., [13-15) and results in a a

strong zonal flowe.g.,[16—18), an essential feature of non-

rotating spherical convection is the high multiplicity of V.u=0, (10

the focus of this paper. _ _ numberR and the Prandtl number Pr, are defined as
The remainder of the paper is organized as follows. After .
_apy

discussing the mathematical formulation of thermal convec- R Pr=£

tion in Sec. Il, the linear stability problem is discussed in VK Pa

Sec. lll. The results of nonlinear convection are presented in i ) ) .
Sec. IV. Section V closes the paper with a brief summary ané\_" the variables in the rest of the paper will be nondimen-

some remarks. sional. _ - , _
The velocity boundary conditions are nonslip and impen-

etrable, which give

00
E*‘U-V@:,BU-I"FKVz@, (6)

Ju
E+u-Vu:—Vp+Rr+V2u, (8)

Il. MODEL AND MATHEMATICAL FORMULATION R .
¢-u=0-u=f-u=0 (11
We consider a Boussinesq fluid with constant thermal dif- ) ) )
fusivity «, thermal expansion coefficient, and kinematic &t the inner and outer bounding spherical surface. Perfect
viscosity ». The Boussinesq fluid is confined in the sphericalthermally conducting boundaries impose the condition
shell of the inner radius; and the outer radiug, and is in ®=0 at r=r, r=r,. (12)

the presence of its own gravitational field
The nonlinear convection is solved by using a three-

g=-1r, (3) dimensional finite-difference method.

. " . e Ill. LINEAR CONVECTIVE STABILITY AND
where y is a positive constant and is the position vector

with the origin at the center of the spherical shell. A well- DEGENERACY
known heating mode[1] is adopted, in which the basic un- It is well known that the principle of exchange stability is
stable conducting temperature gradient, valid for the onset of thermal convection in a nonrotating
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spherical shelf1]. We therefore assume thatst=0, leading 36
to the following equations for the linear stability problem: 34l
0=-V Po + Roor + VZUO, (13) 3.2+
3_
O=ug-r+ Vzo, (14)
281
V -ug=0. (15 026
The above linear system allows one to express the velocity 24y
Ug in the form 22
u=V X V X (rvg), (16) o
i.e., the toroidal flow of convection vanishes in the linear 18}
problem. Substitution of Eq16) into Egs.(13) and(14) and 16 . . . . .
application of operator -V XV onto Eq.(13) yield 0 5 10 ‘f' 20 2 30
0=V2LV?,- RyLO,, (17) _ _ :
FIG. 1. The marginal Rayleigh numb& is shown as a func-
0=Lug+ VZO, (18) tion of | for two different values ofp=r;/r,.
where L is given by the flow,g,(r) andf(r), are determined by the linear stability
P analysis, thg?2l+1) coefficients,C,,, m=0,1,...] andS,,

J
L=— r2v2 + _r2_

peLipes m=1,... |, remain arbitrary, indicating that there exists the

(21+1)-fold degeneracy of the linear convection.
At the onset of spherical convection, the general linear solu- A complete or partial elimination of the2l +1)-fold de-
tion may be written in the form generacy by nonlinearity for the three-dimensional spherical
m=l convection proves and remains to be a mathematically chal-
- ; m lenging task. Both the number and spatial structure of the
v zoﬁ(r)(cm cosme + Snsinmg)Pcoso). (19 stable multiple three-dimensional convection in a spherical
shell near the onset of convection represent an unsolved the-

=l oretical problem, in particular, whelnis moderately large.
0 = >, g/(r)(Cycosme + S, sinmg)PM(cosh), (20)  This paper attempts to demonstrate, through careful three-
m=0 dimensional numerical simulations, the existence and stabil-

ity of multiple nonlinear convection solutions in a moder-
ately thin shell with»=0.8471.=18) characterized by a 37-
fold degeneracy.

where f|(r) and g(r) represent the radial eigenfunctions,
P"(cos#) denotes standard spherical harmonics of degree
Cn m=0,1,2,...landS,, m=1,2,3, ..., are(2l+1) un-

determined coefficients. The linear stability problem then be-

comes IV. MULTIPLICITY OF NONLINEAR SPHERICAL
1 |(| + 1) 3 CONVECTION
{[Fﬁr T2 ] +1(1+ 1)R0}fl(r) =0, (21 A. Initial conditions for simulations

The linear analysis suggests that there exist multiple non-
1|1d? l(1+1) |? linear solutions near the onset of thermal convection in a
9(r) “Rolrd 2 fi(r), (22) spherical shell. An important question is how to find these
which subject to the boundary conditions TABLE I. The values of the marginal Rayleigh nhumkRrare
df, d2f| shown as a function of at the onset of convection fay=0.847.
1= a = F = (23 The most unstable convection mode is characterizeld %8 with
the critical Rayleigh numbeR.=46.65.

at the two spherical bounding surfaces of the shel; and
r=r,. The eigenvalue problem defined by E(&l) and(23) (I, Ry) (I, Ro)
can be readily solved by a shooting method. Some results are

shown in Fig. 1 for two different aspect ratios gfr;/r,,. (14, 51.19 (20, 47.10
For a moderately thin spherical shej=0.847, the critical (15, 49.13 (21, 47.83
Rayleigh numbeR,, the lowest Rayleigh number required to (16, 47.80 (22, 48.83
excite convection, is located &=18 and its neighboring (17, 47.00 (23, 50.17
values are given in Table I. (18, 46.65 (24, 51.78

An important feature of the linear convection is its degen- (19, 46.70 (25, 53.66

eracy. While the critical value dfand the radial structure of
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different nonlinear convection solutions at the same param-
eters numerically. One effective way of obtaining multiple
nonlinear solutions is to treat the usually steady convection
problem as an initial-value problem, starting numerical inte-
gration of the system from carefully chosen different initial
conditions. We employ the following parameterized initial
condition

1. .19 [ J ] 1 9 [ J ]A
U= —LYr +——| —(r¥) |0+ ———| —(r¥V) | o.
r r o6 ar rsinfag| or FIG. 2. Contours of radial flow, at the middle surface of the
(24) spherical shell for Pr=7.0. The solution shown on the left panel
starts with the initial condition?(q=0,1=18,m=0) while the right
Here W is given by panel starts with the initial conditioN’(q=0,l=18,m=10). The
pattern is viewed from 45° from the north pole. Dashed contours
= [Y,m(b’, b) + qYL(g, ¢)]} sir? a(r=r.), (25) indicate radially inward flowu, <0 and solid contours correspond
r to radially outward flowu, > 0.

wherel, m, q,n, andj are the parameters of the initial con-
dition. For example, when we choose=0 andl=18 with
different values ofm, we start our numerical simulations of
three-dimensional convection from different spherical har
monics of the same degrée 18 with the same radial struc-
ture but different spherical structures.

(1) The initial condition¥(gq=0,1=18,m=0). This azi-
muthally axisymmetric, equatorially symmetric initial condi-
tion leads to an axisymmetric stationary convection which is
shown in Fig. 2(left pane). Note that the convective flow
arises from the polar regiong.e., u,>0 at 6=0,7). The

It usually takes a few viscous diffusion times for a non- convection pa.ttern on a §pherical surface is e;ss_enti_ally de-
linear simulation to reach its stationary state. Dependen cribed .by asmgle spherlcal harmomég(e,q’a), |_nd|ca_1t|ng
upon the parameter of a nonlinear convection, our simulathe stationary bifurcation from the linear solution given by
tions typically run about 5-60 viscous diffusion units. We | =18, Co=1,Cyn=0,m=1,... | and§,=0,m=1,... | exists
shall focus on the cas®R—R,)/R.=0.28 throughout the pa- 2nd is stable. . o
per with Pr=7.0(water at room temperaturand other val- (2) The initial condition'¥(q=0,1=18 m=2). This azi-
ues of Pr. In other words, we only consider the weakly nonmuthally periodic, with the azimuthal wave numbe=2,

linear convection at the same Rayleigh numbi&-R,)/R, and equatorially symmetric initial condition leads to a sta-

=0.28| near the onset of convection, in attempting to obtaintonary _az'”_‘“tha”y periodic convection wmm=2 Wh'c.h IS
hown in Fig. 3. The convection pattern in a spherical sur-

multiple nonlinear convection solutions at the exact sam ace is described by a single spherical harmoMﬁg{&,@,

parameters of the problem. T : o . .
indicating the existence and stability of the bifurcation from
the corresponding linear squtiO(fg(e,gb)flg(r).

B. Equatorially symmetric convection (3) The initial condition¥(g=0,=18,m=4). This azi-
muthally periodic, with the azimuthal wave numbmi=4,
and equatorially symmetric initial condition leads to a sta-
"’{i'onary azimuthally periodic convection witin=4 which is
“shown in Fig. 4. Similar to the cask(q=0,=18 m=2), the
equatorially symmetric convection on a spherical surface is

(Ug,Ug, ) (6, 0,T) = (= Ug,Ug, = U) (7 = 6, b + 27/m,r). largely described by a single spherical harmor\fége, ).

(26) (4) The initial conditionW(q=0,=18,m=6). In contrast
to the previous case¥(q=0,1=18,m=2) and ¥(q=0,l

Whenm=0, the convection is axisymmetric, independent of=18 m=4), this azimuthally periodic, with the azimuthal
the azimuthal anglep in an appropriate spherical polar co-
ordinate system. It is important to note that the position of a
pole or an equator in our convection system is arbitrary be-
cause of orientational degeneracy of the problem. When we
refer to an equatorial symmetry or an equator, we always
imply that it is in an appropriately chosen spherical coordi-
nate system. In fact, the position of a pole is largely deter-
mined by the spatial structure of an initial condition used in
our numerical simulations. If an initial condition is equatori-
ally symmetric, the corresponding nonlinear convection usu-
ally remains to be equatorially symmetric. We shall discuss FIG. 3. Contours of radial flow, at the middle surface of the
below which and how different initial conditions result in spherical shell for Pr=7.0 with the initial conditio®(q=0,
multiple spherical nonlinear patterns near the onset of con=18 m=2). On the left panel, we view it from 45° from the north
vection. pole while the right panel is viewed from the south pole.

There exist different parities of convection solutions with
respect to the equatorial plane of a spherical shell. An equ
torially symmetric convection is characterized by the sym
metry property
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FIG. 4. Contours of radial flow, at the middle surface of the FIG. 6. Contours of radial flow, at the middle surface of the
spherical shell for Pr=7.0 with the initial conditio#(gq=0,l spherical shell for Pr=7.0 with the initial conditiow(gq=0,
=18,m=4). On the left panel, we view it from 45° from the north =18 m=12). On the left panel, we view it from 45° from the north
pole while the right panel is viewed from the south pole. pole while the right panel is viewed from the south pole.

wave numbem=6, and equatorially symmetric initial con- (7) The initial conditionW(q=0,1=18,m=12). This azi-
dition leads to an axisymmetric stationary convection whichmuthally periodic, equatorially symmetric initial condition
is eventually the same as that obtained from the simulationeads to a stationary, azimuthally nonperiodic, equatorially
commencing from¥(q=0,l=18,m=0), which is shown on  symmetric convection which is shown in Fig. 6. There are
the left panel of Fig. 2. It suggests that the bifurcation fromtwo small convection cells in the polar regions while the
the linear solution described Bifg( 9, #)f14(r) does not exist  azimuthal structure of the nearly axisymmetric convection
or is unstable. rolls in lower latitudes is modulated. It suggests that the bi-
(5) The initial conditionW(q=0,=18,m=8). This azi- furcation from the linear solutioN1(6, ¢)f.4(r) is unstable
muthally periodic, with the azimuthal wave numb®=8, or does not exist.
and equatorially symmetric initial condition leads to a sta- (8) The initial condition\(q=0,1=18,m=14). This azi-
tionary, azimuthally nonperiodic, equatorially symmetric muthally nonaxisymmetric, equatorially symmetric initial
convection which is shown in Fig. 5. There are a number ofondition leads to the axisymmetric stationary convection
small convection cells in the polar regions and the long conwhich is the same as that obtained usifigg=0,l=18,m
vection rolls that are nearly parallel to the equator in the=10) shown in the right panel of Fig. 2. It suggests that the
equatorial and lower latitudinal regions. While the equatorialhifyrcation from the linear solution(}g(e,@flg(r) is un-
symmetry of the convective flow is preserved, there is NOstaple or does not exist.
azimuthql symmetry or pgriodicity _comparing to the previous (9) The initial condition¥(q=0,/=18 m=16). This azi-
cases with the smaifi initial conditions. _ . muthally periodic, equatorially symmetric initial condition
(6) The initial conditionw(q=0,I=18,m=10). This azi-  |eads to the axisymmetric stationary convection which is the
muthally periodi_c, equatqrially _symmetric initiql cond.ition. same as that obtained usifg(q=0,1=18 m=0) shown in
leads to an axisymmetric stationary convection which isihe left panel of Fig. 2, suggesting that the bifurcation from

shown in the right panel of Fig. 2. This axisymmetric Solu-the Jinear solution described B§L3(6, $)f15(r) is unstable or
tion is different from the casél) with ¥(q=0,1=18,m=0)  j5es not exist.

(left panel of Fig. 2 since the convective flow in this case
descends in the polar regiotie., u, <0 at #=0,). But the
convection pattern on a spherical surface is still mainly de- C. Equatorially asymmetric convection
scribed by a single spherical harmonk‘?l%(e,gb), indicating

that there exist two different axisymmetric nonlinear solu-,,
tions. It also suggests that the bifurcation from the linear
solution described by1J(6, ¢)f,4(r) is unstable or does not
exist.

An equatorially antisymmetric initial condition is charac-
ized by the symmetry property

FIG. 5. Contours of radial flow, at the middle surface of the FIG. 7. Contours of radial flow, at the middle surface of the
spherical shell for Pr=7.0 with the initial conditioW(gq=0,l spherical shell for Pr=7.0 with the initial conditioW(gq=0,l
=18,m=8). On the left panel, we view it from 45° from the north =18,m=1). On the left panel, we view it from 45° from the north
pole while the right panel is viewed from the south pole. pole while the right panel is viewed from the south pole.
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FIG. 8. Contours of radial flow, at the middle surface of the FIG. 10. Contours of radial flow, at the middle surface of the
spherical shell for Pr=7.0 with the initial conditio®(gq=0, spherical shell for Pr=7.0 with the initial conditioW(q=0,l
=18,m=3). On the left panel, we view it from the north pole while =18 m= 7). In the left panel, we view it from the north pole while
the right panel is viewed from the south pole. the right panel is viewed from the south pole.

form of long rolls circulating the whole sphere can be readily

formed. However, these long rolls can be only easily formed
(27 in the equatorial region while they cannot be readily placed

in the polar regions because of spherical topology. As a re-
in an appropriate spherical polar coordinate. Again it is ofsult, many c_onvecf[ion patterns have similar c_haracteristics in
importance to notice that the position of a pafe0, or ) is the equat(_)rlall region but the f!ow struc.ture in the polar re-
arbitrary because of orientational degeneracy of the problen®lions, which is usually complicated, highly depends upon
If an initial condition is equatorially antisymmetric, the cor- the Spatial structure of an initial condition. L
responding nonlinear convection usually remains to be equa- (4 The initial conditionW(q=0,1=18 m=7). This azi-
torially asymmetric. muthally periodic, equatorially antisymmetric initial condi-

(1) The initial condition?(q=0,/=18 m=1). It should be  tion leads to azimuthally nonperiodic, equatorially asymmet-

noted that this initial condition represents a special case bdiC, Stationary convection, which is shown in Fig. 10. Again

cause of the particular symmetry property\(ifg(e #). The there are several long rolls circulating the equatorial region
resulting convection pattern is displayed in Fig. 7. It indi- While a number of small irregular cells are formed in the two

cates that the stationary convection bifurcating from the linPOlar regions. y o ~ o
ear solution described byly(8, #)f1g(r) exists and is stable,. The initial conditionW(q=0,I=18,m=9). This azi-
(2) The initial conditionW(q=0,l=18,m=3). This azi- muthally periodic, equatorially antisymmetric initial condi-
muthally periodic, equatorially antisymmetric initial condi- tlg_n Ieta(;i_s to equatona:!ly asyhmrgt_etrlcr,] a2|mut2§IIy1;10Pp$r:|-
tion leads to azimuthally nonperiodic, equatorially asymmet-O Ic stationary convection, which Is shown In Fig. L1. In the
ric, stationary convection. There is a broken spiral roll in theSPUthern hemisphere, there exists a long spiral roll while the
no’rthern hemisphere while the azimuthal wave numier convection is nearly axisymmetric in the northern hemi-
. . here.
=3 can be clearly seen in the southern polar region. ThéP _— " P _ . .
resulting flow pattern is shown in Fig. 8. The convective flow (6) The |n!tlal_ cond|t|on\_1f(q—0,l_—18 M= 1_1)'_ Th's azl-
possesses neither equatorial nor azimuthal symmetries, sugiuthally periodic, equatorially antisymmetric initial condi-
gesting that the stationary convection bifurcating from theflon leads to equatorially asymmetric, azimuthally nonperi-

linear solution described byig(a, ¢)f15(r) does not exist or _Od_'c stationary convect_|on, which is sh_own In F|g. 12_' Agam
is unstable. it is the flow structure in the polar regions that is distinctly

(3) The initial conditionW(q=0,/=18,m=5). This azi- different from those using different initial conditions.

muthally periodic, equatorially antisymmetric initial condi- (7) The |n!t|al_ cond|t|on\_lf(q:0,l_:18 M= 1.3)'. Th's azl-
muthally periodic, equatorially antisymmetric initial condi-

tion leads to equatorially asymmetric, stationary convectiont_ leads t toriall i ‘muthall .
which is shown in Fig. 9. It is apparent that convection in the lon feads 1o equatorially asymmetric, azimuthally nonperi-
odic, stationary convection which is shown in Fig. 13.

(Ug,Ugs, U (6, 1) = (Ug,— Uy, Up) (7 = 6, ¢+ 2/m,1)

FIG. 9. Contours of radial flow, at the middle surface of the FIG. 11. Contours of radial flow, at the middle surface of the
spherical shell for Pr=7.0 with the initial conditioW(gq=0,l spherical shell for Pr=7.0 with the initial conditioW(g=0,l
=18 ,m=5). On the left panel, we view it from the north pole while =18,m=9). On the left panel, we view it from the north pole while
the right panel is viewed from the south pole. the right panel is viewed from the south pole.
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FIG. 12. Contours of radial flow, at the middle surface of the FIG. 14. Contours of radial flow, at the middle surface of the
spherical shell for Pr=7.0 with the initial conditiof’(q=0,I  spherical shell for Pr=7.0 with the initial conditio®(q=0,l
=18,m=11). On the left panel, we view it from the north pole while =18 m=15). On the left panel, we view it from the north pole while
the right panel is viewed from the south pole. the right panel is viewed from the south pole.

Similar to the previous cases, the long equatorial convectioffonS With different values dfand] in Eq.(25). We therefore
rolls divide the flows into the two hemispherical regions with f0€US on the highly robust pattern of spherical thermal con-
litle communication between them. vection resultl_ng from the mlxed-s_ymmetnc initial condition
(8) The initial conditionW¥(q=0,1=18,m=15). This azi- Y(a=1,1=18,j=m=1,n=19). In this case, the steady non-
muthally periodic, equatorially antisymmetric initial condi- Inéar equilibrium of spherical convection is always de-
tion leads to equatorially asymmetric, azimuthally nonperi-sc”bed by a single, giant spwal roll extending from th_e north
odic, stationary convection shown in Fig. 14. This case i*°l€ t0 the south pole without defects and covering the
again similar to the previous cases using smaller azimutha\’f’hde_ sphgrlcal surface. This partlcuIa}r spherical spwal roll
wave numbers as the initial conditions. was first discovered at Pr=7 reported in a short Rapid Com-
(9) The initial condition¥(q=0,1=18,m=17). This azi- munlcar;uon[lg]. ded th . vsi |
muthally periodic, equatorially antisymmetric initial condi- We have extended the previous analysis to a large range

. > : .
tion leads to equatorially asymmetric, azimuthally nonperi-Of Pr n O(10 )sErs 100. It is four_1d that_ the spherlcal_
odic, stationary convection which is shown in Fig. 15. In convection pattern in the form of a single giant spiral roll is

comparison to the equatorially symmetric initial conditions,"0PUSt, stationary, and stable for the whole range<tPt

all the equatorially antisymmetric initial conditioriexcept ~ ~ 100- Kinetic energies of the flow and the corresponding
for the special casm=1) result in spherical convection pat- StyIeS Of convection for various values of Pr are shown in
terns that have neither the equatorial nor azimuthal symmelP!€ II- Although the kinetic energy of convection changes
tries and that cannot be simply described by a single or gnormously for different values of Pr, the pattern of convec-

combination of a small number of spherical harmonics. Thid!on rémains nearly unchanged for &Pr=100. Two typi-

is mainly attributable to the intricate structure of convectionC@l €xamples of the convective flow are shown in Fig. 16 for
in the polar regions. In some ways, convection in the twoPf=100 and Pr=0.1, respectively, showing a stationary,
polar regions resembles the extensively studied plane-lay&ind!e. giant spiral roll covering the whole spherical surface.
problem but with different horizontal boundary conditions. It IS worth noting that the position of the poles at which the

In the present problem, the long rolls circulating the wholeskiral roll starts or ends is arbitrary because of orientational

sphere in the equatorial region eventually impose a horizord€generacy. _
For smaller values of Rr 0.1, the nonlinear thermal con-

tal boundary condition for the polar convection and hence "’ ) §
determine the structure of the flow in the polar regions. ~ Vection becomes weakly time-dependent and the single long
spiral roll breaks up into four shorter spiral rolls located in

D. Equatorially mixed-symmetric initial conditions the equatorial and middle-latitude regions. The way the four
spiral rolls are connected and vary with time is shown in Fig.
17 for four different instants and its time-dependent kinetic
energy is displayed in Fig. 18. A very small time-step is

It is practically impossible to simulate all the possible
combinations of equatorially mixed-symmetric initial condi-

FIG. 13. Contours of radial flow, at the middle surface of the FIG. 15. Contours of radial flow, at the middle surface of the
spherical shell for Pr=7.0 with an initial conditio®(gq=0,l spherical shell for Pr=7.0 with the initial conditioW(gq=0,l
=18 ,m=13). On the left panel, we view it from the north pole while =18,m=17). On the left panel, we view it from the north pole while
the right panel is viewed from the south pole. the right panel is viewed from the south pole.
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FIG. 17. Contours of radial flow, at the middle surface of the
This is the first paper that investigates the multiplicity of spherical shell for Pr=0.05 at four different instantstas, 7, 8,
nonlinear convection in a moderately thin spherical shell angnd 9.
demonstrates numerically the existence of a large number of
different patterns of spherical convection at the exact samspherical topology, circuiting and covering the whole spheri-
parameter in the vicinity of convective instability. In particu- cal surface, represents the unique characteristic of spherical-
lar, a single, giant, perfect spherical spiral roll is discoveredgeometry convection.
to be stable and robust in a wide range of the Prandtl number The mathematical problem for nonlinear spherical con-
Pr. In contrast to nonlinear patterns in other geometries like &ection associated with a lardgés not well understood. Our
plane layer or a cylinder, the long steady roll, guided bytheoretical knowledge for the existence and stability of
weakly nonlinear thermal convection in a moderately thin
spherical shell is highly limited. We have chosen to tackle
the problem by performing systematic simulations of nonlin-
ear thermal convection using different initial conditions
while keeping the other parameters unchanged. By the nature
of the method, it is certain that our numerical simulations

cannot reveal all the possible stable nonlinear convection
solutions. Nevertheless, on the basis of the current simula-

TABLE II. The kinetic energies of convection are shown as a
function of Pr with the mixed-symmetry initial condition.

Pr  Kinetic energy Convection pattern
100 0.13 steady, single giant spherical spiral
7 152.8 steady, single giant spherical spiral
5 299.6 steady, single giant spherical spiral
3 829.4 steady, single giant spherical spiral
1 7383.9 steady, single giant spherical spiral
0.7 14787 steady, single giant spherical spiral
0.3 71203 steady, single giant spherical spiral
0.1 413 098 steady, single giant spherical spiral
0.05 ~4.6X 10° time-dependent, multiple shorter spirals

required for simulating small-Prandtl-number convection,
making the systematic investigation of the behavior of
small-Pr convection numerically difficult.

V. SUMMARY AND REMARKS
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Kinetic Energy
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FIG. 16. Steady convection in the form of a stationary giant FIG. 18. The kinematic energies of convection are shown as a
spherical spiral roll obtained for Pr=1QQppey and Pr  function of time for Pr=0.7(a single long spiral rojl and Pr
=0.1 (lower). =0.05(multiple shorter spirals
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tions, we propose the following conjectures for nonlinearthermal spherical convection. We shall assume that the
spherical convection near the critical point for R&) ina  weakly nonlinear convection is stationary. Introduce the

moderately thin spherical shell. power series
(i) Steady nonlinear convection with an azimuthal axi- ) 3
symmetry (m=0) and an equatorial symmetry bifurcating R=Ry+ eRy+ €Ry, v =809+ 8701 +8%;, ..., (28)

from Y({S(_b’ ,$)f14(r) exists and is stable. There are two dif- \\here ¢ is a small expansion parameter, the amplitude of
ferent axisymmetric stable convection solutions: one has thg,armal convection. The leading-order problem gives rise to
flow out of the two polar “?9'0”3-6-' U >0 at ‘9:0_ e}ndw); the onset of convection the result of which is shown in Table
the another has the flow into the two polar regiens., U | ', the next-order problem, it can be shown tRat:0 and

:f?haet Or_o%li?]flj”&' 'zg;eng:agéIfa%gaz;ms%ﬁittl)onliftﬁgllrj1t<|)?1rl1in- that all coefficients for the quadratic terms in equations like
ear rcE)bIem 1 H0 Eqg. (2) are identically zero when the convection problem is
(iip) Stead'y nonlinear convection solutions bifurcating self-adjoint and when the radial structure of the convection
. . . . i.e., a three-dimensional problem in a spherical shell rather

from the linear solution¥7y(6, ¢)f15(r) with m=1,2, 4exist Ehan a two-dimensional prgblem ona splg)drras been taken
anc(:liiia)reAﬁtalS):géd nonlinear solutions  bifurcatina from into account. It follows that the higher-order terms play an
Y0, ) 15(r) wit%l m=3567.8 17 arenstablegor do essential role in the present weakly nonlinear convection
1? N ¢ 18 TE R B problem. However, the corresponding theoretical problem
not exist. ear the bifurcation point becomes extremely complicated

It shguld be noted that our.three—dlmensmnal spherica nd is not well understood, particularly in a moderately thin
convection has fundamental differences from the pmblen%pherical shell

described by two-dimensional quadratic equati@®son a
sphere, even though the critical valuéor the onset of con-
vection is given by an even value. This is because our prob-
lem of convection in a spherical shélboth the governing
equations and the adjoint boundary conditjoissself-adjoint L.L. and K.Z. were supported by NERC and PPARC
[7]. For illustrating this important point, we discuss briefly grants, P.Z. and K.Z. were supported by Leverhulme Trust,
the derivation of equations like Eq2) in the context of and X.L. was supported by NSFC grants.
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