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Linear and weakly nonlinear thermal convection in a moderately thin spherical shell in the presence of a
spherically symmetric gravity subject to a spherically symmetric boundary condition is systematically inves-
tigated through fully three-dimensional numerical simulations. The convection problem is self-adjoint and the
linear convective stability is characterized byl, the degree of a spherical harmonicsYl

msu ,fd. While the radial
structure of the linear convection is determined by the stability analysis, there exists as2l +1d-fold degeneracy
in the horizonal structure of the spherical convection. Whenl =Os10d, i.e., in a moderately thin spherical shell,
the removal or partial removal of the degeneracy represents a mathematically difficult, physically not well-
understood problem. By starting with carefully chosen initial conditions, we are able to obtain a variety of
nonlinear convective flows at exactly the same parameters near the onset of convection, including steady
axisymmetric convection, steady azimuthally periodic convection, steady azimuthally nonperiodic convection,
equatorially asymmetric convection, and steady convection in the form of a single giant spiral roll covering the
whole spherical shell which is stable and robust for a wide range of the Prandtl number.
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I. INTRODUCTION

The problem of thermal convection in a spherical fluid
shell is of interest to geophysical and astrophysical fluid sys-
tems (e.g., [1–3]). At leading-order approximation, thermal
convection in the Earth’s mantle(a thick spherical shell) or
in Mercury’s mantle(a moderately thin shell) is subject to a
spherically symmetric radial gravity force and a spherically
symmetric boundary condition. It is generally accepted that
planetary magnetic fields are generated through magnetohy-
drodynamic processes in their electrically conducting fluid
cores below the planetary mantles. Paleomagnetic and his-
torical magnetic field measurements suggest persistent dis-
tinct patterns of variation of the geomagnetic field taking
place in different regions of the lower mantle[4]. There is
strong evidence that the structure of the Earth’s magnetic
fields is strongly affected by the pattern of heat flux bound-
ary conditions at the top of the fluid core which is associated
with the pattern of the overlying mantle convection[5].
Similar effects would occur in other Earth-like planets. This
is because lateral variations in heat flux across the core-
mantle boundary drive flows in planetary cores which can
significantly influence the generation process of planetary
magnetic fields[6]. The problem of convection pattern in a
spherical shell is hence closely linked to the thermal history
of planets and their magnetic fields.

The convection problem in a spherical shell, particularly
in a moderately thin shell, is marked by the pattern and ori-
entational degeneracies(e.g., [7–10]). Here the pattern de-
generacy is concerned with the exact same eigenvalue for
many linear solutions which have different spatial structures
on a spherical surface and are physically equally realizable,
while the orientational degeneracy arises from the arbitrary

rotation of a given convection solution in a spherical shell.
It is well known that solutions of the linear convective

stability are characterized byl, the degree of a spherical har-
monicsYl

m [1]. The preferred value ofl, denoted bylc, and
the radial structure of the linear solution can be determined
by the linear stability analysis. It follows that there exists
s2lc+1d-fold degeneracy of the linear problem. Generally
speaking, when the spherical shell is thick,lc=Os1d, the re-
moval or partial removal of the degeneracy is possible(e.g.,
[7]). However, when the thickness of the shell decreases,lc
increases and the corresponding nonlinear problem for re-
moving or partially removing thes2lc+1d-fold degeneracy
becomes extremely complicated. Furthermore, there are fun-
damental differences between the cases with even and odd
values oflc.

It was first shown by Busse[7] (see also[10]) that the
solvability conditions for the weakly nonlinear convection
with 2ø lcø6 select a small number of steady convection
patterns when the system is not self-adjoint. For example, he
showed that the axisymmetric convection solution is pre-
ferred for lc=2 while the tetrahedral solution is stable for
lc=3. The mathematical problem of two-dimensional pattern
formation on a sphere without reference to the physical de-
tails of a system has been studied by a number of authors
(e.g.,[8,11,12]). Matthews[11,12] has recently made signifi-
cant progress on the understanding of the spherical pattern
problem for large values ofl. He considered a two-
dimensional variableW near a bifurcation point

Wsu,f,td = o
m=−l

l

zmstdYl
msu,fd, s1d

wherezm are in general complex and all the modeszm have
the same growth ratel. The steady two-dimensional problem
is then governed by the followings2l +1d equations*Electronic address: kzhang@ex.ac.uk
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0 = lzm + o
m1=−l

l

o
m2=−l

l

csm1,m2,mdzm1
zm2

, s2d

wherecsm1,m2,md are related to the Clebsch-Gordan coef-
ficients. The existence and stability of the stationary solu-
tions of Eq.(2) for evenl up to l =12 were examined. Mat-
thews [11,12] found that all bifurcating branches of
stationary solutions to quadratic order are unstable, the axi-
symmetric state is never the preferred solution and the pre-
ferred solutions have icosahedral symmetry. In consequence,
the higher-order terms, which are system dependent, play an
essential role in determining the physically realizable pat-
terns in spherical geometry. Matthews[11] also studied the
Swift-Hohenberg model by numerical simulations using a
pseudospectral method. Many different patterns, including
axisymmetric and spiral solutions, were found.

This paper presents the first systematic study of three-
dimensional spherical convection in a moderately thin
spherical shell withlc=Os10d using fully three-dimensional
numerical simulations. A number of new convection patterns
in a spherical shell are found for the first time. The paper
considers a Boussinesq fluid of uniform viscosityn confined
in a spherical shell bounded by two concentric spherical sur-
faces of inner radiusr i and outer radiusro which have non-
slip velocity and isothermal temperature boundary condi-
tions. Convective motions in the spherical shell are driven by
a spherically symmetric gravity force in connection with a
spherically symmetric distribution of heat sources, a well-
known convection model proposed by Chandrasekhar[1]. It
is significant to note that the convection problem in a nonro-
tating spherical shell is self-adjoint. In comparison with ro-
tating spherical convection in which the Coriolis force
breaks spherical symmetry(e.g., [13–15]) and results in a
strong zonal flow(e.g.,[16–18]), an essential feature of non-
rotating spherical convection is the high multiplicity of
stable nonlinear solutions near its bifurcation point which is
the focus of this paper.

The remainder of the paper is organized as follows. After
discussing the mathematical formulation of thermal convec-
tion in Sec. II, the linear stability problem is discussed in
Sec. III. The results of nonlinear convection are presented in
Sec. IV. Section V closes the paper with a brief summary and
some remarks.

II. MODEL AND MATHEMATICAL FORMULATION

We consider a Boussinesq fluid with constant thermal dif-
fusivity k, thermal expansion coefficienta, and kinematic
viscosityn. The Boussinesq fluid is confined in the spherical
shell of the inner radiusr i and the outer radiusro and is in
the presence of its own gravitational field

g = − gr , s3d

whereg is a positive constant andr is the position vector
with the origin at the center of the spherical shell. A well-
known heating model[1] is adopted, in which the basic un-
stable conducting temperature gradient,

¹Tssrd = − br , s4d

where b is a positive constant, is produced by a uniform
distribution of heat sources in the whole spherical system.
The problem of thermal convection in a spherical shell is
then governed by the following three equations[1]:

]u

]t
+ u · = u = −

1

r
¹ p + gaQr + n¹2u, s5d

]Q

]t
+ u · = Q = bu · r + k¹2Q, s6d

= ·u = 0, s7d

where t is time, r is the fluid density,Q represents the de-
viation of the temperature from its static distributionTssrd, p
is the total pressure, andu is the three-dimensional velocity
field, u=sur ,uu ,ufd in spherical polar coordinatessr ,u ,fd
with sr̂ ,û ,f̂d denoting the corresponding unit vectors. In Eq.
(5), the termagQr represents the buoyancy force that drives
thermal convection and provides a coupling to the heat equa-
tion (6).

We shall employ the thickness of the spherical shelld
=sro−r id as the length scale,d2/n as the unit of time, and
bd2n /k as the unit of temperature fluctuation of the system,
which lead to the dimensionless equations

]u

]t
+ u · = u = − ¹ p + RQr + ¹2u, s8d

Pr
]Q

]t
+ u · = Q = u · r + ¹2Q, s9d

= ·u = 0, s10d

where the two nondimensional parameters, the Rayleigh
numberR and the Prandtl number Pr, are defined as

R=
abgd6

nk
, Pr =

n

k
.

All the variables in the rest of the paper will be nondimen-
sional.

The velocity boundary conditions are nonslip and impen-
etrable, which give

f̂ ·u = û ·u = r̂ ·u = 0 s11d

at the inner and outer bounding spherical surface. Perfect
thermally conducting boundaries impose the condition

Q = 0 at r = r i, r = ro. s12d

The nonlinear convection is solved by using a three-
dimensional finite-difference method.

III. LINEAR CONVECTIVE STABILITY AND
DEGENERACY

It is well known that the principle of exchange stability is
valid for the onset of thermal convection in a nonrotating
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spherical shell[1]. We therefore assume that] /]t=0, leading
to the following equations for the linear stability problem:

0 = − ¹ p0 + R0Q0r + ¹2u0, s13d

0 = u0 · r + ¹2Q0, s14d

= ·u0 = 0. s15d

The above linear system allows one to express the velocity
u0 in the form

u = ¹ 3 ¹ 3 srv0d, s16d

i.e., the toroidal flow of convection vanishes in the linear
problem. Substitution of Eq.(16) into Eqs.(13) and(14) and
application of operatorr ·= 3¹ onto Eq.(13) yield

0 = ¹2L¹2v0 − R0LQ0, s17d

0 =Lv0 + ¹2Q0, s18d

whereL is given by

L = − r2¹2 +
]

]r
r2 ]

]r
.

At the onset of spherical convection, the general linear solu-
tion may be written in the form

v0 = o
m=0

m=l

f lsrdsCm cosmf + Sm sinmfdPl
mscosud, s19d

Q = o
m=0

m=l

glsrdsCm cosmf + Sm sinmfdPl
mscosud, s20d

where f lsrd and glsrd represent the radial eigenfunctions,
Pl

mscosud denotes standard spherical harmonics of degreel,
Cm, m=0,1,2, . . . ,l andSm, m=1,2,3, . . . ,l, ares2l +1d un-
determined coefficients. The linear stability problem then be-
comes

HF1

r

d2

dr2r −
lsl + 1d

r2 G3

+ lsl + 1dR0J f lsrd = 0, s21d

glsrd =
1

R0
F1

r

d2

dr2r −
lsl + 1d

r2 G2

f lsrd, s22d

which subject to the boundary conditions

f l =
dfl
dr

=
d2f l

dr2 = 0 s23d

at the two spherical bounding surfaces of the shellr =r i and
r =ro. The eigenvalue problem defined by Eqs.(21) and(23)
can be readily solved by a shooting method. Some results are
shown in Fig. 1 for two different aspect ratios ofh=r i / ro.
For a moderately thin spherical shellh=0.847, the critical
Rayleigh numberRc, the lowest Rayleigh number required to
excite convection, is located atlc=18 and its neighboring
values are given in Table I.

An important feature of the linear convection is its degen-
eracy. While the critical value ofl and the radial structure of

the flow,glsrd and f lsrd, are determined by the linear stability
analysis, thes2l +1d coefficients,Cm, m=0,1, . . . ,l and Sm,
m=1, . . . ,l, remain arbitrary, indicating that there exists the
s2l +1d-fold degeneracy of the linear convection.

A complete or partial elimination of thes2l +1d-fold de-
generacy by nonlinearity for the three-dimensional spherical
convection proves and remains to be a mathematically chal-
lenging task. Both the number and spatial structure of the
stable multiple three-dimensional convection in a spherical
shell near the onset of convection represent an unsolved the-
oretical problem, in particular, whenl is moderately large.
This paper attempts to demonstrate, through careful three-
dimensional numerical simulations, the existence and stabil-
ity of multiple nonlinear convection solutions in a moder-
ately thin shell withh=0.847slc=18d characterized by a 37-
fold degeneracy.

IV. MULTIPLICITY OF NONLINEAR SPHERICAL
CONVECTION

A. Initial conditions for simulations

The linear analysis suggests that there exist multiple non-
linear solutions near the onset of thermal convection in a
spherical shell. An important question is how to find these

FIG. 1. The marginal Rayleigh numberR0 is shown as a func-
tion of l for two different values ofh=r i / ro.

TABLE I. The values of the marginal Rayleigh numberR are
shown as a function ofl at the onset of convection forh=0.847.
The most unstable convection mode is characterized bylc=18 with
the critical Rayleigh numberRc=46.65.

sl , R0d sl , R0d

(14, 51.10) (20, 47.10)

(15, 49.13) (21, 47.82)

(16, 47.80) (22, 48.85)

(17, 47.00) (23, 50.17)

(18, 46.65) (24, 51.78)

(19, 46.70) (25, 53.66)
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different nonlinear convection solutions at the same param-
eters numerically. One effective way of obtaining multiple
nonlinear solutions is to treat the usually steady convection
problem as an initial-value problem, starting numerical inte-
gration of the system from carefully chosen different initial
conditions. We employ the following parameterized initial
condition

u0 =
1

r
LCr̂ +

1

r

]

]u
F ]

]r
srCdGû +

1

r sinu

]

]f
F ]

]r
srCdGf̂.

s24d

HereC is given by

C = fYl
msu,fd + qYn

j su,fdg
1

r
sin2 psr − r id, s25d

wherel, m, q,n, and j are the parameters of the initial con-
dition. For example, when we chooseq=0 and l =18 with
different values ofm, we start our numerical simulations of
three-dimensional convection from different spherical har-
monics of the same degreel =18 with the same radial struc-
ture but different spherical structures.

It usually takes a few viscous diffusion times for a non-
linear simulation to reach its stationary state. Dependent
upon the parameter of a nonlinear convection, our simula-
tions typically run about 5–60 viscous diffusion units. We
shall focus on the casesR−Rcd /Rc=0.28 throughout the pa-
per with Pr=7.0(water at room temperature) and other val-
ues of Pr. In other words, we only consider the weakly non-
linear convection at the same Rayleigh numberfsR−Rcd /Rc

=0.28g near the onset of convection, in attempting to obtain
multiple nonlinear convection solutions at the exact same
parameters of the problem.

B. Equatorially symmetric convection

There exist different parities of convection solutions with
respect to the equatorial plane of a spherical shell. An equa-
torially symmetric convection is characterized by the sym-
metry property

suu,uf,urdsu,f,rd = s− uu,uf,− urdsp − u,f + 2p/m,rd.

s26d

Whenm=0, the convection is axisymmetric, independent of
the azimuthal anglef in an appropriate spherical polar co-
ordinate system. It is important to note that the position of a
pole or an equator in our convection system is arbitrary be-
cause of orientational degeneracy of the problem. When we
refer to an equatorial symmetry or an equator, we always
imply that it is in an appropriately chosen spherical coordi-
nate system. In fact, the position of a pole is largely deter-
mined by the spatial structure of an initial condition used in
our numerical simulations. If an initial condition is equatori-
ally symmetric, the corresponding nonlinear convection usu-
ally remains to be equatorially symmetric. We shall discuss
below which and how different initial conditions result in
multiple spherical nonlinear patterns near the onset of con-
vection.

(1) The initial conditionCsq=0,l =18,m=0d. This azi-
muthally axisymmetric, equatorially symmetric initial condi-
tion leads to an axisymmetric stationary convection which is
shown in Fig. 2(left panel). Note that the convective flow
arises from the polar regions(i.e., ur .0 at u=0,p). The
convection pattern on a spherical surface is essentially de-
scribed by a single spherical harmonicsY18

0 su ,fd, indicating
the stationary bifurcation from the linear solution given by
l =18,C0=1, Cm=0,m=1, . . . ,l andSm=0,m=1, . . . ,l exists
and is stable.

(2) The initial conditionCsq=0,l =18,m=2d. This azi-
muthally periodic, with the azimuthal wave numberm=2,
and equatorially symmetric initial condition leads to a sta-
tionary azimuthally periodic convection withm=2 which is
shown in Fig. 3. The convection pattern in a spherical sur-
face is described by a single spherical harmonicsY18

2 su ,fd,
indicating the existence and stability of the bifurcation from
the corresponding linear solutionY18

2 su ,fdf18srd.
(3) The initial conditionCsq=0,l =18,m=4d. This azi-

muthally periodic, with the azimuthal wave numberm=4,
and equatorially symmetric initial condition leads to a sta-
tionary azimuthally periodic convection withm=4 which is
shown in Fig. 4. Similar to the caseCsq=0,l =18,m=2d, the
equatorially symmetric convection on a spherical surface is
largely described by a single spherical harmonicsY18

4 su ,fd.
(4) The initial conditionCsq=0,l =18,m=6d. In contrast

to the previous casesCsq=0,l =18,m=2d and Csq=0,l
=18,m=4d, this azimuthally periodic, with the azimuthal

FIG. 2. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0. The solution shown on the left panel
starts with the initial conditionCsq=0,l =18,m=0d while the right
panel starts with the initial conditionCsq=0,l =18,m=10d. The
pattern is viewed from 45° from the north pole. Dashed contours
indicate radially inward flowur ,0 and solid contours correspond
to radially outward flowur .0.

FIG. 3. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with the initial conditionCsq=0,l
=18,m=2d. On the left panel, we view it from 45° from the north
pole while the right panel is viewed from the south pole.
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wave numberm=6, and equatorially symmetric initial con-
dition leads to an axisymmetric stationary convection which
is eventually the same as that obtained from the simulation
commencing fromCsq=0,l =18,m=0d, which is shown on
the left panel of Fig. 2. It suggests that the bifurcation from
the linear solution described byY18

6 su ,fdf18srd does not exist
or is unstable.

(5) The initial conditionCsq=0,l =18,m=8d. This azi-
muthally periodic, with the azimuthal wave numberm=8,
and equatorially symmetric initial condition leads to a sta-
tionary, azimuthally nonperiodic, equatorially symmetric
convection which is shown in Fig. 5. There are a number of
small convection cells in the polar regions and the long con-
vection rolls that are nearly parallel to the equator in the
equatorial and lower latitudinal regions. While the equatorial
symmetry of the convective flow is preserved, there is no
azimuthal symmetry or periodicity comparing to the previous
cases with the small-m initial conditions.

(6) The initial conditionCsq=0,l =18,m=10d. This azi-
muthally periodic, equatorially symmetric initial condition
leads to an axisymmetric stationary convection which is
shown in the right panel of Fig. 2. This axisymmetric solu-
tion is different from the case(1) with Csq=0,l =18,m=0d
(left panel of Fig. 2) since the convective flow in this case
descends in the polar regions(i.e., ur ,0 atu=0,p). But the
convection pattern on a spherical surface is still mainly de-
scribed by a single spherical harmonicsY18

0 su ,fd, indicating
that there exist two different axisymmetric nonlinear solu-
tions. It also suggests that the bifurcation from the linear
solution described byY18

10su ,fdf18srd is unstable or does not
exist.

(7) The initial conditionCsq=0,l =18,m=12d. This azi-
muthally periodic, equatorially symmetric initial condition
leads to a stationary, azimuthally nonperiodic, equatorially
symmetric convection which is shown in Fig. 6. There are
two small convection cells in the polar regions while the
azimuthal structure of the nearly axisymmetric convection
rolls in lower latitudes is modulated. It suggests that the bi-
furcation from the linear solutionY18

12su ,fdf18srd is unstable
or does not exist.

(8) The initial conditionCsq=0,l =18,m=14d. This azi-
muthally nonaxisymmetric, equatorially symmetric initial
condition leads to the axisymmetric stationary convection
which is the same as that obtained usingCsq=0,l =18,m
=10d shown in the right panel of Fig. 2. It suggests that the
bifurcation from the linear solutionY18

14su ,fdf18srd is un-
stable or does not exist.

(9) The initial conditionCsq=0,l =18,m=16d. This azi-
muthally periodic, equatorially symmetric initial condition
leads to the axisymmetric stationary convection which is the
same as that obtained usingCsq=0,l =18,m=0d shown in
the left panel of Fig. 2, suggesting that the bifurcation from
the linear solution described byY18

16su ,fdf18srd is unstable or
does not exist.

C. Equatorially asymmetric convection

An equatorially antisymmetric initial condition is charac-
terized by the symmetry property

FIG. 7. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with the initial conditionCsq=0,l
=18,m=1d. On the left panel, we view it from 45° from the north
pole while the right panel is viewed from the south pole.

FIG. 4. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with the initial conditionCsq=0,l
=18,m=4d. On the left panel, we view it from 45° from the north
pole while the right panel is viewed from the south pole.

FIG. 5. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with the initial conditionCsq=0,l
=18,m=8d. On the left panel, we view it from 45° from the north
pole while the right panel is viewed from the south pole.

FIG. 6. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with the initial conditionCsq=0,l
=18,m=12d. On the left panel, we view it from 45° from the north
pole while the right panel is viewed from the south pole.
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suu,uf,urdsu,f,rd = suu,− uf,urdsp − u,f + 2p/m,rd
s27d

in an appropriate spherical polar coordinate. Again it is of
importance to notice that the position of a pole(u=0, orp) is
arbitrary because of orientational degeneracy of the problem.
If an initial condition is equatorially antisymmetric, the cor-
responding nonlinear convection usually remains to be equa-
torially asymmetric.

(1) The initial conditionCsq=0,l =18,m=1d. It should be
noted that this initial condition represents a special case be-
cause of the particular symmetry property ofY18

1 su ,fd. The
resulting convection pattern is displayed in Fig. 7. It indi-
cates that the stationary convection bifurcating from the lin-
ear solution described byY18

1 su ,fdf18srd exists and is stable.
(2) The initial conditionCsq=0,l =18,m=3d. This azi-

muthally periodic, equatorially antisymmetric initial condi-
tion leads to azimuthally nonperiodic, equatorially asymmet-
ric, stationary convection. There is a broken spiral roll in the
northern hemisphere while the azimuthal wave numberm
=3 can be clearly seen in the southern polar region. The
resulting flow pattern is shown in Fig. 8. The convective flow
possesses neither equatorial nor azimuthal symmetries, sug-
gesting that the stationary convection bifurcating from the
linear solution described byY18

3 su ,fdf18srd does not exist or
is unstable.

(3) The initial conditionCsq=0,l =18,m=5d. This azi-
muthally periodic, equatorially antisymmetric initial condi-
tion leads to equatorially asymmetric, stationary convection,
which is shown in Fig. 9. It is apparent that convection in the

form of long rolls circulating the whole sphere can be readily
formed. However, these long rolls can be only easily formed
in the equatorial region while they cannot be readily placed
in the polar regions because of spherical topology. As a re-
sult, many convection patterns have similar characteristics in
the equatorial region but the flow structure in the polar re-
gions, which is usually complicated, highly depends upon
the spatial structure of an initial condition.

(4) The initial conditionCsq=0,l =18,m=7d. This azi-
muthally periodic, equatorially antisymmetric initial condi-
tion leads to azimuthally nonperiodic, equatorially asymmet-
ric, stationary convection, which is shown in Fig. 10. Again
there are several long rolls circulating the equatorial region
while a number of small irregular cells are formed in the two
polar regions.

(5) The initial conditionCsq=0,l =18,m=9d. This azi-
muthally periodic, equatorially antisymmetric initial condi-
tion leads to equatorially asymmetric, azimuthally nonperi-
odic stationary convection, which is shown in Fig. 11. In the
southern hemisphere, there exists a long spiral roll while the
convection is nearly axisymmetric in the northern hemi-
sphere.

(6) The initial conditionCsq=0,l =18,m=11d. This azi-
muthally periodic, equatorially antisymmetric initial condi-
tion leads to equatorially asymmetric, azimuthally nonperi-
odic stationary convection, which is shown in Fig. 12. Again
it is the flow structure in the polar regions that is distinctly
different from those using different initial conditions.

(7) The initial conditionCsq=0,l =18,m=13d. This azi-
muthally periodic, equatorially antisymmetric initial condi-
tion leads to equatorially asymmetric, azimuthally nonperi-
odic, stationary convection which is shown in Fig. 13.

FIG. 8. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with the initial conditionCsq=0,l
=18,m=3d. On the left panel, we view it from the north pole while
the right panel is viewed from the south pole.

FIG. 9. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with the initial conditionCsq=0,l
=18,m=5d. On the left panel, we view it from the north pole while
the right panel is viewed from the south pole.

FIG. 10. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with the initial conditionCsq=0,l
=18,m=7d. In the left panel, we view it from the north pole while
the right panel is viewed from the south pole.

FIG. 11. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with the initial conditionCsq=0,l
=18,m=9d. On the left panel, we view it from the north pole while
the right panel is viewed from the south pole.
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Similar to the previous cases, the long equatorial convection
rolls divide the flows into the two hemispherical regions with
little communication between them.

(8) The initial conditionCsq=0,l =18,m=15d. This azi-
muthally periodic, equatorially antisymmetric initial condi-
tion leads to equatorially asymmetric, azimuthally nonperi-
odic, stationary convection shown in Fig. 14. This case is
again similar to the previous cases using smaller azimuthal
wave numbers as the initial conditions.

(9) The initial conditionCsq=0,l =18,m=17d. This azi-
muthally periodic, equatorially antisymmetric initial condi-
tion leads to equatorially asymmetric, azimuthally nonperi-
odic, stationary convection which is shown in Fig. 15. In
comparison to the equatorially symmetric initial conditions,
all the equatorially antisymmetric initial conditions(except
for the special casem=1) result in spherical convection pat-
terns that have neither the equatorial nor azimuthal symme-
tries and that cannot be simply described by a single or a
combination of a small number of spherical harmonics. This
is mainly attributable to the intricate structure of convection
in the polar regions. In some ways, convection in the two
polar regions resembles the extensively studied plane-layer
problem but with different horizontal boundary conditions.
In the present problem, the long rolls circulating the whole
sphere in the equatorial region eventually impose a horizon-
tal boundary condition for the polar convection and hence
determine the structure of the flow in the polar regions.

D. Equatorially mixed-symmetric initial conditions

It is practically impossible to simulate all the possible
combinations of equatorially mixed-symmetric initial condi-

tions with different values ofl and j in Eq. (25). We therefore
focus on the highly robust pattern of spherical thermal con-
vection resulting from the mixed-symmetric initial condition
Csq=1,l =18,j =m=1,n=19d. In this case, the steady non-
linear equilibrium of spherical convection is always de-
scribed by a single, giant spiral roll extending from the north
pole to the south pole without defects and covering the
whole spherical surface. This particular spherical spiral roll
was first discovered at Pr=7 reported in a short Rapid Com-
munication[19].

We have extended the previous analysis to a large range
of Pr in Os10−2døPrø100. It is found that the spherical
convection pattern in the form of a single giant spiral roll is
robust, stationary, and stable for the whole range 0.1øPr
ø100. Kinetic energies of the flow and the corresponding
styles of convection for various values of Pr are shown in
Table II. Although the kinetic energy of convection changes
enormously for different values of Pr, the pattern of convec-
tion remains nearly unchanged for 0.1øPrø100. Two typi-
cal examples of the convective flow are shown in Fig. 16 for
Pr=100 and Pr=0.1, respectively, showing a stationary,
single, giant spiral roll covering the whole spherical surface.
It is worth noting that the position of the poles at which the
spiral roll starts or ends is arbitrary because of orientational
degeneracy.

For smaller values of Pr,0.1, the nonlinear thermal con-
vection becomes weakly time-dependent and the single long
spiral roll breaks up into four shorter spiral rolls located in
the equatorial and middle-latitude regions. The way the four
spiral rolls are connected and vary with time is shown in Fig.
17 for four different instants and its time-dependent kinetic
energy is displayed in Fig. 18. A very small time-step is

FIG. 14. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with the initial conditionCsq=0,l
=18,m=15d. On the left panel, we view it from the north pole while
the right panel is viewed from the south pole.

FIG. 15. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with the initial conditionCsq=0,l
=18,m=17d. On the left panel, we view it from the north pole while
the right panel is viewed from the south pole.

FIG. 12. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with the initial conditionCsq=0,l
=18,m=11d. On the left panel, we view it from the north pole while
the right panel is viewed from the south pole.

FIG. 13. Contours of radial flowur at the middle surface of the
spherical shell for Pr=7.0 with an initial conditionCsq=0,l
=18,m=13d. On the left panel, we view it from the north pole while
the right panel is viewed from the south pole.
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required for simulating small-Prandtl-number convection,
making the systematic investigation of the behavior of
small-Pr convection numerically difficult.

V. SUMMARY AND REMARKS

This is the first paper that investigates the multiplicity of
nonlinear convection in a moderately thin spherical shell and
demonstrates numerically the existence of a large number of
different patterns of spherical convection at the exact same
parameter in the vicinity of convective instability. In particu-
lar, a single, giant, perfect spherical spiral roll is discovered
to be stable and robust in a wide range of the Prandtl number
Pr. In contrast to nonlinear patterns in other geometries like a
plane layer or a cylinder, the long steady roll, guided by

spherical topology, circuiting and covering the whole spheri-
cal surface, represents the unique characteristic of spherical-
geometry convection.

The mathematical problem for nonlinear spherical con-
vection associated with a largel is not well understood. Our
theoretical knowledge for the existence and stability of
weakly nonlinear thermal convection in a moderately thin
spherical shell is highly limited. We have chosen to tackle
the problem by performing systematic simulations of nonlin-
ear thermal convection using different initial conditions
while keeping the other parameters unchanged. By the nature
of the method, it is certain that our numerical simulations
cannot reveal all the possible stable nonlinear convection
solutions. Nevertheless, on the basis of the current simula-

TABLE II. The kinetic energies of convection are shown as a
function of Pr with the mixed-symmetry initial condition.

Pr Kinetic energy Convection pattern

100 0.13 steady, single giant spherical spiral

7 152.8 steady, single giant spherical spiral

5 299.6 steady, single giant spherical spiral

3 829.4 steady, single giant spherical spiral

1 7383.9 steady, single giant spherical spiral

0.7 14 787 steady, single giant spherical spiral

0.3 71 203 steady, single giant spherical spiral

0.1 413 098 steady, single giant spherical spiral

0.05 <4.63105 time-dependent, multiple shorter spirals

FIG. 16. Steady convection in the form of a stationary giant
spherical spiral roll obtained for Pr=100supperd and Pr
=0.1 slowerd.

FIG. 17. Contours of radial flowur at the middle surface of the
spherical shell for Pr=0.05 at four different instants att=6, 7, 8,
and 9.

FIG. 18. The kinematic energies of convection are shown as a
function of time for Pr=0.7(a single long spiral roll) and Pr
=0.05 (multiple shorter spirals).
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tions, we propose the following conjectures for nonlinear
spherical convection near the critical point for Pr=Os1d in a
moderately thin spherical shell.

(i) Steady nonlinear convection with an azimuthal axi-
symmetry sm=0d and an equatorial symmetry bifurcating
from Y18

0 su ,fdf18srd exists and is stable. There are two dif-
ferent axisymmetric stable convection solutions: one has the
flow out of the two polar regions(i.e., ur .0 atu=0 andp);
the another has the flow into the two polar regions(i.e., ur
,0 at u=0 andp). Note that, if a particularu0 is a solution
of the problem, −u0 cannot be also a solution of the nonlin-
ear problem.

(ii ) Steady nonlinear convection solutions bifurcating
from the linear solutionsY18

m su ,fdf18srd with m=1,2,4exist
and are stable.

(iii ) All steady nonlinear solutions bifurcating from
Y18

m su ,fdf18srd with m=3,5,6,7,8, . . . ,17 areunstable or do
not exist.

It should be noted that our three-dimensional spherical
convection has fundamental differences from the problem
described by two-dimensional quadratic equations(2) on a
sphere, even though the critical valuel for the onset of con-
vection is given by an even value. This is because our prob-
lem of convection in a spherical shell(both the governing
equations and the adjoint boundary conditions) is self-adjoint
[7]. For illustrating this important point, we discuss briefly
the derivation of equations like Eq.(2) in the context of

thermal spherical convection. We shall assume that the
weakly nonlinear convection is stationary. Introduce the
power series

R= R0 + eR1 + e2R2, v = «v0 + «2v1 + «3v2, . . . , s28d

where e is a small expansion parameter, the amplitude of
thermal convection. The leading-order problem gives rise to
the onset of convection the result of which is shown in Table
I. In the next-order problem, it can be shown thatR1=0 and
that all coefficients for the quadratic terms in equations like
Eq. (2) are identically zero when the convection problem is
self-adjoint and when the radial structure of the convection
(i.e., a three-dimensional problem in a spherical shell rather
than a two-dimensional problem on a sphere) has been taken
into account. It follows that the higher-order terms play an
essential role in the present weakly nonlinear convection
problem. However, the corresponding theoretical problem
near the bifurcation point becomes extremely complicated
and is not well understood, particularly in a moderately thin
spherical shell.
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